NONLINEAR INTERACTION OF HIGH-FREQUENCY
AND LOW-FREQUENCY WAVES

V. E. Zakharov and A. M. Rubenchik UDC 533.952;534.2

The interaction of high-frequency waves with low-frequency (acoustic) waves is investigated.
The analysis is carried out in the Hamiltonian formalism in the interest of generality. The
instability problem is investigated for the high-frequency wave. The general results oh-
tained in the article are applied to the stability analysis of eleciromagnetic waves inplasmas
and dielectrics. Wave propagation in weakly dispersive media is considered. It is shown
that the waves are unstable. The possibility of self-focusing of the waves is studied.

Wave coupling in nonlinear media frequently involves the participation of two types of waves: high-
frequency (HF) and low-frequency (LF) (the low-frequency wave is an acoustic wave in the majority of
cases). This kind of situation occurs, for example, in the interaction of electromagnetic and acoustic
waves in a dielectric, of spin and elastic waves in a ferromagnet, and of various wave modes in a plasma.

The interaction of HF and LF waves in various media is amenable to treatment from a unified point
of view. Such an attempt has been made by Rudakov and Vedenov [1] on the basis of the Lagrangian for-
malism for a nonlinear medium (see also [2, 3]). In [1], however, the geometric-optical approximation is
used for the HF wave, and in many respects this approximation is inadequate.

In the present article we investigate the interaction of HF and LF waves in an arbitrary medium for
which the Hamiltonian is the energy expressed in canonical variables.

This statement of the problem turns out to be fairly comprehensive insofar as canonical variables
can be introduced for many media, covering the two-fluid hydrodynamical model of a plasma [4], magneto-
hydrodynamics [5], waves on the surface of a fluid [6], and ferromagnets {7, 8]. The introduction of canon-
ical variables makes it possible to apply a unified treatment to the problem of the instability of a strong
HF wave in a medium in which it is possible for LF waves to propagate.

Special cases of this instability have been investigated before, including the decay instability of a
Langmuir wave [9], stimulated Mandel'shtam—Brillouin scattering (SMBS) [10, 11], and the "electroacous-
tic™ instability of an electromagnetic wave in a plasma [12-15]. In the present study we show (Sec. 1) that
the interaction Hamiltonian for the interaction of a HF wave of not too large amplitude with LF waves has
a simple form, such that within the context of this Hamiltonian the HF instability problem has an exact so-
lution. The simplest instabilities are those which result in the growth of HF waves scattered at large an-
gles. Such instabilities are the analog of SMBS and actually go over to SMBS for small-amplitude HF
waves in the case of electromagnetic waves in a dielectric. Like SMBS, they can grow only for long co-
herent wave packets. With a reduction in the scattering angle the instability acquires another character
and is preserved for a stationary wave with a random phase angle. This instability results in the growth
of transverse inhomogeneities of the medium and subsequently to "disintegration” of the HF waves, i.e.,
the formation of local amplitude singularities. Analogous effects are induced by the Mntrinsic" nonlinear-
ity of HF waves (a field-squared correction to the refractive index for electromagnetic waves), which is
included in our discussion from the outset.
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In Sec. 4 we apply the results of the general theory to the interaction of electromagnetic and acoustic
waves in plasmas and dielectrics. In Sec. 5 we solve the hydrodynamic stability problem for a wave in a
medium with weak sound dispersion. Examples of such waves are ion-acoustic waves in a plasma and
waves on the surface of a shallow liquid. We show that these waves are stable in the one~-dimensional
problem and unstable in the multidimensional case.

1. The Fundamental Model

We consider the interaction of HF and LF waves in a conservative medium characterized by a Hamil-
tonian H. We introduce the complex normal amplitudes @y for HF and by, for LF waves. The quadratic
part of the Hamiltonian of the medium has the form

HO = kaakak* dk + S kakb}f.* dk

where wy and Q. are the dispersion laws for HF and LF waves. The wave interaction Hamiltonian can be
written in the form

H;= Hi(l)—{-Hi(z)-i— H®

Here Hl(i) describes the mutual interaction of HF waves, Hl(z) the interaction of HF and LF waves,
and H1(3) the mutual interaction of LF waves. Equations for ag and bk can be obtained by variation of the
Hamiltonian H=H;+H; according to the rule
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In the linear approximation the wave amplitudes have the time dependences

ax = a° exp [— io (ko) 8]
b = bi® exp [— iQ (ko) ]

We assume hereinafter that the LF wave amplitude is small (by «<ay), whereupon we neglect the LF
mutual interaction Hamiltonian Hi(3) and in Hi(z) retain only terms linear in bg. Also, we limit the dis-
cussion o the lowest~order terms in @) that are nonvanishing under averaging over the HF period. These
requirements enable us to find the Hamiltonian

H® = { e bt et (V¥ 8ucn, dk dk, di, 12

Here ( )* denotes the complex conjugate.

We note that the theory is valid for the case in which

HO> S Oububy dk

and the HF waves cause strong "retuning" of the LF waves. We choose the Hamiltonian Hi(i) in the form

H ReY = —1— S Wkklk’k,ak*ak‘*ak,akaﬁkﬂ,_k,_k,dk dkl dkz dkg (1 3)

This form of Hy (1) is realized in a medium with a cubic nonlinearity as well as in certain cases of
square-law nonhnear media (see Sec. 5). The equations of motion (1.1) have the form

da :
—ML + topa; = — iS(Fk,kk,bk, + Chee™d-1,*) Bk, ey dlsy —

— .SWkk;kzksakl* i, 0 Sk keyks BKy Ak, dkg (1.4)

abk S "
—X 1 iQu by = — i\ Piie Ok, 51<-k1+k2 dk, dk,

The interaction Hamiltonian is greatly simplified if the HF waves form a narrow packet near k ~ky
in k~space. We can then put

Wik, = Wickikoke = 4
Dk = Tk, = f (&, y)

7/ 1
o (k) = @ (ko) + 5 0k + ﬁa_‘;@akaakp
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In the event that the LF waves are acoustic, 2=sk, we can calculate the function f(k, k) and the com-
plete Hamiltonian of the system in explicit form. To do so we transform from the amplitude a) to the fol-
%akexp (iw (ko) t + i (k — ko) 1) dk (1.5)

lowing:
Vi) = oo

and from the amplitude by to the density variation 6p and velocity v of the medium
(1.6)

80 — 1 Py 2k (b + bx*) e-¥r dk
T em 5 Yash ek
i kst 5

PR TRE (bf‘ — b) ik

- (2:112)3/’ v

The energy of a HF packet narrow in k-space is
&=~ o (k) Sakak* dk

and its local density is w (ko)|¥ (r, t)[?
In the presence of an acoustic wave the quantity w (ky) acquires the variation

dw (ko) 6 + i) (kn) v

do (ko) =
and the corresponding variation of the HF wave energy is
68‘:S|‘F]2< do + 22 >dr (1.7)
The quantity ée clearly coincides with Hi(z). In an isotropic medium
do k) _ ko
av Tk
and we denote
3o (ko) B
¥p
Moreover, we can put v=V®, where & is the hydrodynamic potential
In the variables ¥, 6p, and © the complete Ha.miltonian of the medium has the form
9w v |
= {{oo| ¥+ (T — Y Vet o | [+
(1.8)

V $
+ VP + ] VI e (V0P + 5 ¥ P tp 0 57 ar

where Vg is the group velocity.
We have made use here of the fact that
2% 92
ak, Z)kB oz, 625

, & Vg L1
= 0p o + g AL (V —ak>

in an isotropic medium, where z is the coordinate in the direction of k;
It is evident from Eq (1.5) that the quantity ¥ represents a canonical transformation from ay, 80

that
Y S} 1, 8v 14
l—gt—=LVg o7 ——T(Dk Eye —-ZTiA_[‘“F—f-
oy
‘F(QPFF BBP'{‘G@—>=5<H——S(B0[‘Flzdr>(6‘1’*)“1 (1.9)
The variables 8p and & form a pair of canonically conjugate variables (see, e.g., [4]), which are
given by equations of the form
a8 - 8H
R—:————poA(D——a-———I‘FP e (1.10)
8H
(1.11)

po 896 _
ST TR =
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Substituting (1.5) and (1.6) into (1.7), we find for f(k, k)

— E__\% (k, ko) \ (1.12)
f(k; ko) - ( 15ﬂ33P0 ) (Bpo + as kkof] )

Equations (1.9)-(1.11) describe the interaction of any kind of HF waves with acoustic waves. Itis
apparent that two mechanisms exist for the given interaction: variation of the HF wave frequency due to
modulation of the density of the medium by sound and "entrainment” of the HF wave by the moving medium.
Inasmuch as

8= 00 ® GABm @
T po ' ) Vs,

where Vp is the HF phase velocity, the ratio of these effects are of the order s/ Vp; for s «Vp the HF wave
entrainment effect can be neglected. ’

In the stationary case, when 8/8t=0, terms proportional to 82/9z% are neglected in Egs. (1.9)-(1.11).
Upon rejecting them we obtain the nonlinear parabolic equation
. AF
— 2 G A =gl ¥pY, g =B

2

which describes stationary self-focusing {16, 17]. Self-focusing takes place if g-q'<0.

2. Stability of a Stationary Wave

As Eq. (1.10) indicates, for the interaction of HF with acoustic waves
'O,k k)=£0, k=0
Under this condition the set of equations (1.4) has an exact solution:
be=0, = Ay, 0= ox+g|A] (2.1)
which represents a stationary monochromatic wave. '

Let ak=cke‘iwot and let us linearize Eq. (1.4) against the background of the solution (2.1), assuming
that by, b*, ¢, cx* depend on the time as e~ 19t The linearized problem has an exact solution, and the
primary wave turns out to be coupled with a pair of HF waves having wave vectors k+ p and a pair of LF
waves having vectors = p. We have the following dispersion relation for Q:

: {Q — Ok O, — 2Wigrp, ko kotp, 1| AP 4 7] AP 4

Ok A 1T, JELAPRY
FR g X oy

I‘ 2 A2
O — Wi, o ki A ] A mplemn e PIAR

: o g
(F_ 'a—n; ~ )zlA 12
+ *-—p‘%:—:p@_—} =[4f (me,ka—p, Ko ko +

- * *
+ Pp. Ko+p, Ko FD: Kos Ko—D + T-p. Ko, kotp F"P: Ko—Ps Ko ) %

Q,—Q Q+Q
r

Ty Cntorken |, Do —p. ke
X (Wk..+p, Komp Ko,y - —2 +pgp°__p9 el e ed TR lep K (2.2)
2,

We analyze the dispersion relation (2.2) in the limit as |A[2—0. Near the surface
Ok, = Ogyp -+ Q, (2.3)
Eq. (2.2) becomes simplified;

(Q - (oko + (’)ka—p) (Q - Szp) -+ | A 12 l Fp' Ke-D, knlz (24)
and has the solution

@y — O o+ Q (o — o ,— Q)P
= T

which ig unstable for
(O — Duemp + Qp)* <4 AP ppep, i
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This instability represents stimulated Mandel'shtam—Brillouin scattering [10, 11] or a first-order
decay instability [9]. Its growth rate has the maximum

Tmax = | 4] |Tp, k-p. o]

which is attained on the surface (2.3). We now calculate‘the_ group velocity for the perturbation induced by
this instability. From (2.4) we have

1 . [iz8) dw.
=‘2_(V1+V2)1 v =—5§', sz“‘—;;';—p (2.5)
The instability is concomitant in a reference frame moving with the group velocity of the primary
wave.

dRe Q.
dp

Another type of instability occurs near the surface
20y, = Ogpp + Oggmp (2.6)
{unless this surface is degenerate at the point p=0).
Let p be a certain point on the indicated surface. We introduce

amka_p _ 6mkn+p

U= ap y W= op

and the deviation ép from that point. Equation (2.2) can be simplified:

@ — (dpuy) + Q| 417 (Q — (Spuy) — Q4] %) = — [P?[|A]!
Here
(F—;- Koo ko+l))2 l 1-‘p, Ko+ p, Ko ]2
O —— 2Wtp, ko kotps ko -+ 4 0, F o, — 0y T By — 0+ gy
= — 2W, ot -+ Tp, kpp, &)° IF—P»ko,ko—p i
? Ko Ko T o 8p - O, = Dy, p Qp — O, + Opep
r T T T,
. P Kotp, K = —p, Ke=p, Ko, ~p, Ko, Ket+p ~ ~p, Ko=P, Xy
P = Wko-x»p, Ke=P, Ko, Ko + Qp . wk., F “)krp + Qp +mkn — mko—p
The maximum growth rate occurs for
I AP u,8p
,3p:IQ; gzLI f L g — (ép)
and is equal to L el
Tmax = IPHA|2
The group velocity of the disturbance is
fije) 1
Zp = 7 (Wt uy) (2.7)

The instability described here represents a second-order decay instabﬂity [18], and it occurs in an
isotropic medium if wp ' <0.

The foregoing discussion is valid for not too small values of p/ky; as p/ky— 0 it is impossible to
separate first- and second-order decay instabilities, so that this case must be analyzed separately.

3. Long-Wave Perturbations

For p<«k, it is convenient to investigate the instability of a stationary wave within the framework of
the system (1.9)~(1.11). Linearizing the system against the background of the solution

8p = 0, ® = p4¥, P o= Aeia|Al%
we deduce the dispersion relation
Lk (@)
{(@ — pV cos by — —(4’1}(92 — pis?) =

= L(0)p42{q(Q2 -~ p) + B%op® + 20Bp2 cos 0 - LELL0) (3.1)
L (6) = 0" cos® B + Vky ' sin’8, cos® = (p, ko)/pks
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This relation has been derived by Gurovich and Karpman [13] for the special case @ =q=0=0. It can
also be obtained from Eq. (2.2) by passing to the limit as p/ky—0.

We next analyze Eq. (3.1) for the special case V<s, when first-order decay instability is absent. We
can then put = pV cos 8 and reduce Eq. (3.1) to the form

(Q — pV cos 0)% — ¥/, L2 (8) p* = gere (6) L (0) p2 42
2 2 22 2 Qog—1
g g — B 0 4t 6.2

whereupon

Q — pVcos 6 = + V LpPgenA® I Y/, LPp* (3.3)

The interaction with LF waves "renormalizes® the intrinsic nonlinearity of the HF waves. Instability
occurs if there is an interval of angles in which

L (6) gerr (8) << 0
In each direction 8 the instability domain is bounded by the values
P <4 genr (8)/L (0) | A2

where the maximum growth rate y=qegfA? is attained for p?=2| qepr0)/140)| A% If w ' <0, we have L(g) =
0 for an angle such that tan¥=k(wy'"| V!, Inthis direction the domain of instahility is unbounded and goes
over with increasing p to a decay instability of second order.

As we see from Eq. (3.3), the instability described above is absolute in the primary wave system. It
causes a buildup of the modulation, which is "at rest" with respect to the primary wave, and it is appro-
priately called modulation instability. Modulation instability can develop for sufficiently short wave pack-
ets and leads to strong disintegration of the primary wave (see [19]). It is evident from Eq. (3.3) that the
group velocity is

o0 1, Poy
5 V5P
The absolute character of the instability in the wave system is preserved up to p/k ~(qA%/ kV)1/3.

We now examine the case s<V. Decay instability takes place near the cone cos 6=s/V. The growth
rate of the decay instability as p/k— 0 has the form

Yp = f (p, /C) l A l = @ (P/k)ll’ <qlA2/(’lh)l/‘ (3.4)
This equation is valid if

L p<sp
Next we limit the problem to the case s < V.

For not too small values of q(q/q'>> s2/V? the influence of the LF waves can be neglected in the en-
tire range of angles except near §=7/2, and it can be assumed that only intrinsic modulation instability oc-
curs in that same range. For angles close to 8=7/2 we can put L= V/k; and neglect terms containing o
as well, whereupon we obtain

{(Q — pV cos 0)> — Y, V2p'k2} (QF — p¥s?) = VpPA®K! [(Q® — P’ ¢ + ¢'p%? (3.5)
In the apalysis of (3.5) we initially let =0. Then the following cases are possible.

1°. wilq'A?«s?V"2 In this case, for

' s q/A2 l/z
p/k0>(—7~ o, >

a first-order decay instability takes place. For smaller values of p the first of conditions (3.4) is violated.
For

p s g ANz
T<(_t7 "“)

Dy

we can neglect the term (Lp?? in Eq. (3.5) and simplify the latter:
(Q — pV cos ) (Q — ps) = VE ipsy’ A2 (3.8)
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The strongest instability takes place on the cone cos §=s/V, where

_ V3 (Vsp Ay
ImQ-——-Z——p( =) (3.7)

Differentiating (3.6) with respect to p, we find up to small terms

Q 2
> =T v (3.8
2. 8YV? «q'A?/w «8/V. Now for
Vgt AR\
p/k>(s— mk )

decay instability is again realized. For smaller values of p the second condition (3.4) fails. Then Eq. (3.5)
is reduced to the form

Q2(Q — pV cos B — Vp¥/2k) = pis A® (3.9)
The instability is a maximum on the surface
3 ’ 1
cos 0 = — szo , ImQ = —‘-/2—— (pPstq’ A2yl (3.10)
Differentiating (3.9) with respect to p, we find up to small terms
T (3.11)
EER
We refer to (3.10) as a modified instability. For

s g’ A%\
P/k~(—l7_ o )

its growth rate is comparable with Lp?. For smaller values of p/k Eq. (3.9) must be replaced by the ex-
pression

Q% (Q — pV cos 8)* =k Vpis?q' 42 (3.12)
The maximum growth rate
Im Q@ = p (Vg A%k (3.13)
is attained for §=r/2. Differentiating Eq. (3.12) with respect to p, we obtain
aQlop =Y,V (3.14)

3. 1> q'Az/wk > 8/V. This case differs from the preceding one in that the domain of first-order
decay instability is absent, and the modified instability extends to p ~k;, where it is now required to use
Eq. (2.2). The maximum growth rate of the modified instahility is

V= (holsPg’ A% (3.15)

We point out that, as implied by Egs. (3.3), (3.7), and (3.13), for small wave numbers the instability
growth rate is proportional to p. This result is directly observable from Eq. (3.5), in which the term (Lp?)?2
can be neglected as p— 0 [20].

Passing to the limit as p— 0 is tantamount to transition to the nonlinear geometric-optical approxi-
mation for the HF wave. This approximation was used in [1, 2]. Inclusion of the term (Lp?)? is equivalent
to the inclusion of Fraunhofer diffraction of HF waves.

As evinced by Eqgs. (2.5), (3.8), (3.11), and (3.14), HF wave instabilities due to interaction with LF
waves are concomitant in the reference frame of the LF wave and can be excited only for sufficiently long
coherent wave packets (I>V/Im Q). Mainly an instability with maximum growth rate in the vicinity of p ~
ky develops here.

For a stationary wave with random phase and coherence length

1p <€ 1< V/InQ

an instability with p ~k; also occurs, but its growth rate is smaller by a factor IImQ/V. This is not true,
however, for the "long-wave" instabilities (3.7) and (3.13), whose growth rate is independent of the longi-
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tudinal phase structure of the wave, because the geometric-optical approximation is valid for its descrip-
tion (the "Landau damping" of long-wave perturbations by quanta of the primary wave is eliminated by the
concomitant character of the instability). The development of long-wave instabilities results in the growth
of large-~scale inhomogeneities of the medium extending in the direction of the propagation axis; the cur-
vature of the ray paths at these inhomogeneities leads to the formation of caustics and an abrupt increase
in the HF amplitude near them. Nonlinear dissipative mechanisms can be activated in this case, and damp-
ing of the HF waves can take place in a transparent medium. The further growth of the instability can also
lead to the formation of transverse shock waves and the development of two-dimensional "acoustic™ [21]
turbulence of the medium. For short wave packets with I« V/Im Q LF instabilities do not develop in gen-
eral.

We now assess the influence of the intrinsic HF nonlinearity. For a monochromatic wave or a long
packet it is required to compare the maximum growth rate of the intrinsic modulation instahility with the
decay (for q'A/wy « s/V) or modified-decay (for q'A?/wy >s/V) instability. We find that under the condi-
tions

' A2 r\9 ,
IR <L for a>g (3.16)
A2 r a/z
I <(L) 5 for gy

mainly a LF instability will develop. In the opposite case the influence of the LF waves can be neglected.
Note that under conditions (3.16) a modulation instabilify can develop for sufficiently short packets satis-
fying the condition

1 @ s Vv
H(qAZ) <I<gg

For a stationary wave with random phase a special analysis is required in order to compare the in-
trinsic and LF instabilities.

4. Instability of Electromagnetic Waves

We now apply the foregoing results to the instability analysis of electromagnetic waves in a plasma
and a nonlinear dielectric.

We represent the electric field of the wave in the form
E= _;_ (Se—twt+ixr S etot—ikr)

Then the energy of the field has the form

E—-L S-L 2 (e0") S+ dk

O

L ike
Sy = e SS (r) ek dr

The energy is expressed in terms of canonical variables according to the relation

”

E= kaakak* dk

1 I/TT—‘T
ak——'gk' _—g%—(em)sk

We assume for simplicity that the wave has linear polarization. In this case g can be regarded as
a scalar, and Egs. (1.9)-(1.11) are directly applicable, with

whence

1 T 5 .,
oV w ae @S

The quantity qA% represents a nonlinear frequency shift in a monochromatic wave:
gA? = Ao = wbngn,™
Here 6nyp; is the nonlinear correction to the refractive index. Similarly,
g A% = Q)Snsno‘l
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where 6ng is the striction correction to the refractive index. In a nonlinear dielectric a first-order decay
instability represents stimulated Mandel'shtam—Brillouin scattering and has a very low threshold. The
parameter s/V is very small for a dielectric (~ 107°), so that even for the most realistic field amplitudes
(8ng/ny~107°) the decay instability goes over to a modified instability. The ratio q'/q fluctuates for a di-
electric between the limits 0.1 to 10. For q'£€q the criterion (3.16) is also readily satisfied, so that it be-
comes possible to observe modulation instability in long coherent packets. As for the observation of mod-
ulation instability in short pulses, this effect should be expected only in media having a sufficiently strong
noninertial nonlinearity.

Ion-acoustic oscillations exist in a plasma without a magnetic field only for Te >» Tij. For the quan-
tities s/V and q'A? we have

s =< m >’/z oy Vo, 0F = @2 - k%2

VT \M ke ¢
g A2 mp4 2 E?
o, 80,4 Vp2 bdumngc?

The quantity gA?, which coincides with the maximum growth rate of the intrinsic instability, has been
calculated in [20]:

42— o (3 k22 E2
ga" = 0,3 4 Bmp2—|—4k2c2 hmngc?

q/q,~VTe2/c2<1

The analysis in that paper is valid in a plasma for field amplitudes satisfying the condition

E? @ Vo2
4mngc? <6p_2 cze

as otherwise the oscillational velocity of the electrons is greater than their thermal velocity and it is re~

quired to include nonlinear corrections in the ion-acoustic dispersion law.

Consequently, for long coherent wave packets in not too hot aplasma, predominantly decay (or mod-
ified) instability develops. Intrinsic instability due to electron nonlinearity can develop for short packets,
and for a stationary nonmonochromatic wave any one of the long-wave instabilities can occur.

In an isothermal plasma, Tg~ Ty, sufficiently small-amplitude waves experience only intrinsic insta-
bility. However,

E2 m8wdV 2 ‘43 52
4Amngc? = Mmp4kc4 for 74 /®k<—175‘

and for low frequencies the LF instability growth rate exceeds the ion-acoustic frequency. For waves of
this amplitude instability occurs for any temperature ratio in the plasma.

5. Waves in Weakly Dispersive Media

Considerable importance attaches to the investigation of nonlinear waves in media characterized by
weak dispersion, in which

op = sk (1 + Ak?) (AR 1)
This dispersion law occurs, for example, for waves on the surface of shallow water or for ion-acous-
tic waves in a plasma. Media with weak dispersion are described by the hydrodynamical equations with an
additional term (see, e.g., [18]):

dp .
a—t-l-dxvpV(I):O
o0 | (VO _ _s_< 3 o

8p + o e 27\,A6p>

o (5.1)
Po

ot 2 Po

Here & is the hydrodynamic potential, and the variables 8p and & are canonically conjugate. Intro-
ducing the variables @) according to Eq. (1.6), we obtain the interaction Hamiltonian in the form

i
H; = S [V koo @i, 81, * + ( )*] Okcaii, Gk dky dk, A+ —g—S [V ki Ot , 4+ (1 Bcrcyo, Ok ey dly (5.2)
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1/, 1 1/,
. _ st (k1) ko 12 (kka)k1 /2 (kiks) K
ka]kg = Ukklkz - 18 (JT:SPO)I/z{ k:/zklx/a 'J(_ 1/2112 1/, + l/zk 1/, 'T' 3g (kk1k2) /2}
and the equations for g are
0ak . . * ’ Y
-0 T i = — i S {V ke O, Ok k1, + 2V st 0,0, O i, + U kkxk,akxakﬁlﬂkﬁkz} dk, dk, (5.3)

Equations (5.1) describe stationary nonlinear waves, which are almost sinusoidal if the nonlinear fre-
quency shift gA? is much smaller than the dispersion frequency correction. This condition is expressed by
the inequality

qA¥ oy, < Ak,
which is the condition for applicability of the results of this section. Here k; is the stationary wave number.

We consider the instability problem for a stationary wave initially with respect to long-wave pertur-
bations with p «k;.

In this case the waves represent a packet narrow in k-space with a spread of the order p. Due to
nonlinear interaction, waves with other numbers also occur, so that g can be approximately represented in
the form

O =00 + & + @t -+ by (5.4)

Here ak(o) is the fundamental wave packet with center frequency w(ky), the ak are concentrated near
k =+ 2k, and have center frequencies * 2w(ky), and bg’ represents the Mntrinsic" LF field component of ax
concentrated in the interval of wave numbers k ~P and having a frequency Aw ~ w (ky+ 1;) w(kg). On the
right-hand sides of the equations for “k and bk we include only squared terms in ak

We obtain approximately

da
%— + iopat = — Vo, S a1, D, OBy, Ay dk,
oy (5.5)
= i = — iU —-2kok.,k.,Sa§g).ag?*6k+kl+kz dk; dks
ab,° o
+ l&)kbk = — 2i S ka‘k,,ak ak, Gk;—k—k, dk1 dkg (56)
Equations (5.5) can be solved explicitly:
at = — ———————V”‘k"k“ %a O, 08, dk, dk. (5.7)
k o ko) — 20 (ko) ky Ok, —ki—k; W8 G Ky
- U— " »
ag = — mky%—::(k& S ak(xo) 0) 6k+k1+k: dk,dk,

Equation (5.6) coincides with Eq. (1.4) for the external LF component, so that by® can be regarded as
independent LF degrees of freedom and the resultis of the preceding part of the article applied to it. In
particular, we have

fk, ko) = 2V, O =hoy, B = _@j_%ﬂu_

The quantities aki, upon substitution into Eq. {5.3), yield the intrinsic HF nonlinearity, where

Wokgegeo? 1ok 3(g 12
© (2Kko) — 20 (ko) o (Zko) + 20 (ko) 16200

g=-—

We note that q'/q ~7\k02 « 1. Inasmuch as ¢'«q, stationary self-focusing is determined by the sign
of q and occurs in media for which q <0 and, accordingly, A>0. In the case A>0 first-order decay insta-
bility is possible, while second-order decay instability is forbidden (for p~kj). Conversely, for A<0 first-
order decay instability is forbidden, and second-order instability is allowed. We introduce the quantity
qeff according to Eq. (3.2). We have

_ B (58)
Qetr = q<1+ 1 — coS® — 3Ako® COS O )
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The quantity geff is negative for almost all angles except in the narrow cone
02 ~ 6Mk,’

For all angles outside this cone we can use Eq. (3.2); modulation instability is possible here with a
growth rate ~qA?%. Near angles 6%~ 6}\k02 a stronger instability occurs, representing a modification of first-
order decay instability and going over to the latter for p/ky>qAZ/wiAky?.

The growth rate of this instability attains a maximum for p ~k, and is equal to y ~ (qA%k,2sky)!/ 2.

In the case A <0 we can use Eq. (2.1) for all angles, where the quantity Lgggr> 0 over the entire range
of angles, and modulation instability is absent. The latter situation, which is caused by the coincidence of
zeros of the functions L) and qeffl9), is true only up to terms )\koz(p/k)i/3.

We also note that
Lgee = %5 (g + 1)2sky >0 for 0=0

Consequently, wave instability is absent in weakly dispersive media in the one-dimensional problem,
regardless of the sign of A.

For

p/k~<__‘“12 )"“

© k)\.]ioz

a second-order decay instability is found. To calculate its growth rate we perform a canonical transfor-
mation to the Hamiltonian (1.3) (see [7]):

14 ¢ ¢ 8 dkidk * ¥
g = Ck—i kkk: %k Cic,Ok—k, -k, PK10K2 28 V ke, O,k 8 k. dk S Uk g% 5 dk. dk
o D — Qg — O, @y, — O _“mk: Ky -k—k¢ 1 %Re @ k--+-mmk; + oy, kt+kitk, W81 BBy

Following this transformation the effective interaction Hamiltonian

. (5.9)
H; = S Wikteak, € 1™ €1, €k, Suaieyter i, Ak dky dK, dky
is obtained, where
U * * * *
Wkk,kgkg S L .5)). U"“‘“‘l) Kk, U_ ek ki, U (katks) koks V(k2+k3) oy ¥ eyl Vit Vit kokaks
= _ i . otk _
Kk, T O, O Oy, O T Oy, Ok, ™ Ok, — D, Opii, — O — O,
*® * * *
_ 2kazk—ks Vlelkrkl _ zvkxkakx—kz szkkz*—k _ 2kakzk1—k2 Vk;\klk;,—k -9 ka;k‘kavkgkjkr*kl (5 10)
g ge, T Dy, — O O, T O — 07" Oy, g T O — O, 1 el T '

and for A <0 the denominator in (5.10) is nonvanishing.

The dispersion relation can be deduced from Eq, (2.2), in which it is required to put Fkkik =0 (gee
also [7]). We then have 2

Im Q = Y, ¥ {0kyrp 1 Oipp — 20, + 2477 (p, ko)) — 4F2 (p, ko) A* (5.11)
where

F (B, ko) = Wiep, kpep ke F (0, ko) = ¢
G(P, ko) == Wka+p, Ko kot p, ko 4 (P, Ko) = G(P, ko) +G(—p, ko) +q

Indeterminacies of the type

: [V (e, ko, ko) P
ST ey (g gy

ocecur in the calculation of q and G, and for their resolution we note that expression (5.10) must go over to
(3.2) for p«k,, with qu¢ evaluated according to Eq. (5.8). We infer from a comparison of these expres-
sions that all indeterminate terms are to be set equal to zero.

For not too small values of p/k we can assume on the basis of (5.11) that

(Im Q)max ~ 4| F (p, k) | 42
where p is calculated on the surface 2w =Wk +pt Wk -p- For F(p, ky) we have approximately
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2 Vo | 41V i1p, k0 0 Vi trp, o
F(p, ko)_ T o (k) —20 (k) @ () + o (ko — p) — o (ko) (5.12)

From (5.10) we reject terms whose demoninators do not have an order of smallness equal to }\kzo.
Adding an orthogonal increment 6 to p, we obtain the resonance surface equation
§2 = sz (kz _ pz)

All vectors p lying on the resonance surface are almost parallel to ky. In (5.2), therefore, we can
replace the scalar products by the products of the moduli. We finally have (up to Ak%)

’ o Fo (ko? — pz)‘/n k
F(p, ko) = ‘1(1—" —702—_—’_—‘102—)
The maximum growth rate
= qu = A(’)nl

Tmax
is attained by the instability at the "upper end" of the resonance surface as p—k,.

An analogous procedure for the introduction of the intrinsic LF degrees of freedom and resolution of
indeterminacies is applicable to other media having a square-law nonlinearity. An exception is the case
in which

1V (e, ko, ko) [2
lau_goa(e)+m(ko+e)——m(lco)

In this case there is no indeterminacy, the influence of the intrinsic LF component can be disregarded,
and the interaction of HF waves can be described by means of the effective Hamiltonian (1.3).

In conclusion the authors wish to thank R. Z. Sagdeev for a discussion of the results.
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